Inorg. Chem. 1984, 23, 4412-4417

Figure 4. Absorption spectra of $[Fe(salen)]_2S$ and $[Fe(salen)]_2O$ in DMF solutions in the UV-visible region. $[\lambda_{max}, nm(\epsilon_M)]$: 490 (6930), 348 (23 500); 360 (19 200), 355 (20 400).

Possible Biological Relevance. Aquomet-Hr and H₂S or sulfide at pH ~8 form a species, sulfide-Hr, with the composition 2 Fe:S^{2-,47,48} Sulfide-Hr is a chromophore with a band at 510 nm ($\epsilon_{\rm M} \sim 1200$), suggesting, as previouily recognized,⁴⁷ a relationship with [Fe(salen)]₂S and [Fe(HEDTA)]₂S²⁻.

Recent work⁴⁸ has shown that sulfide-Hr is stabilized in the mixed-valence Fe(III) $(S = \frac{5}{2}) + Fe(II) (S = 2)$ oxidation level, which is spin coupled to give a S = 1/2 ground state. Valence states are trapped on the Mössbauer time scale. Consequently, the Fe₂S portions of sulfide-Hr and [Fe(salen)]₂S are not isoelectronic. However, in DMF solution [Fe(salen)]₂S undergoes a well-defined electrochemical reduction at $\tilde{E}_{1/2} = -1.27$ V vs. SCE ($\Delta E_p = 80$ mV, $i_{p,c}/i_{p,a} \simeq$ 1). The corresponding reduction of [Fe(salen)]₂O in DMF occurs at -1.07 V. In Me₂SO solution the potential is -1.05V.⁴⁹ [Fe(salen)]₂S also exhibits a one-electron oxidation in DMF at -0.28 mV ($\Delta E_p = 90$ mV, $i_{p,c}/i_{p,a} \approx 1$). [Fe(salen)]₂O is reported to afford only poorly resolved electrochemical oxidation, but its diiron(III,IV) level has been reached by chemical oxidation and isolated.9 These observations raise the possibility of isolating or generating the species [Fe(salen)] $_2S^{+,-}$, with the anion being isoelectronic with the currently characterized state of sulfide-Hr. For the latter, available evidence does not permit a distinction between the proposed⁴⁷ structures Fe-S²⁻-Fe and Fe-Fe-S²⁻. Such a distinction may be possible upon elucidation of the properties of $[Fe(salen)]_2S^-$.

In summary, this research provides characterization of the only structurally authenticated example of the Fe(III)-S-Fe(III) single bridge. The set $[Fe(salen)]_2S^{-0,+}$ (stability permitting) provides an attractive opportunity for further study of structural and electronic properties mediated by a sulfide bridge, including trapped vs. delocalized valence states and magnetic coupling.

Acknowledgment. This research was supported by NIH Grant GM 28856. NMR and X-ray diffraction equipment were obtained by NSF Grants CHE 80-00670 and CHE 80-08891.

Supplementary Material Available: Listings of anisotropic temperature factors, calculated hydrogen atom positions, magnetic susceptibility data (22-291 K), and observed and calculated structure factors for $[Fe(salen)]_2S$ (21 pages). Ordering information is given on any current masthead page.

- (47) Freier, S. M.; Duff, L. L.; Van Duyne, R. P.; Klotz, I. M. Biochemistry 1979, 18, 5372.
- (48) Kurtz, D. M., Jr.; Sage, J. T.; Hendrich, M.; Debrunner, P. G.; Lukat, G. S. J. Biol. Chem. 1983, 258, 2115.
- (49) Wenk, S. E.; Schultz, F. A. J. Electroanal. Chem. 1979, 101, 89.

Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Linear Polysiloxanes from Dichlorosilane

DIETMAR SEYFERTH* and CHRISTIAN C. PRUD'HOMME¹

Received June 19, 1984

Polysiloxanes of type $RR'R''SiO(SiH_2O)_nSiRR'R''$ (R, R', R'' = Me, Me, Me; Me, H, H; Et, Et, Me, Me, H) have been prepared by three different methods: (1) reactions of $ClSiH_2O(SiH_2O)_nSiH_2Cl$ with CH_3MgBr , Me_3SiOH , and Et_3SiOH ; (2) H_2SO_4 -catalyzed equilibration of cyclic $[H_2SiO]_n$ oligomers with $Me_3SiOSiMe_3$; (3) cohydrolysis of H_2SiCl_2 with Me_3SiCl and Me_2HSiCl using NaH_2PO_4/Na_2HPO_4 -buffered media. Lower species, $Me_2RSiO(SiH_2O)_nSiMe_2R$ (n = 1-3), were isolated and characterized (R = Me, H).

Introduction

In an earlier paper² we described the cyclic polysiloxanes, $[H_2SiO]_n$, which are obtained when dichlorosilane, H_2SiCl_2 , is hydrolyzed under the appropriate conditions.³ Also of

Postdoctoral Associate, on leave from Rhône-Poulenc Recherches, Lyon.
Seyferth, D.; Prud'homme, C. C.; Wiseman, G. H. Inorg. Chem. 1983, 22, 2163.

interest to us were linear siloxanes of the type $RR'R''SiO-[SiH_2O]_nSiRR'R''$, where R, R', and R'' can be the same or different. We report here our studies directed toward this goal. Linear polysiloxanes containing H₂SiO units in the polysiloxane chain have been reported in the patent literature.

⁽³⁾ Previous studies of the hydrolysis of dichlorosilane are discussed in ref 2.

Table I. Cohydrolysis of Dichlorosilane and Trimethylchlorosilane

amt of Me ₃ SiCl, mmol	amt of H ₂ SiCl ₂ , mmol	Me ₃ SiCl/ H ₂ SiCl ₂	siloxane yield, %	n ^a	amt of siloxanes, mmol (wt %)
664	166	4	90	0	189 (55.5)
				1	78 (29.2)
				2	20 (9.4)
				3	2.9 (1.6)
				4	<0.1 (<0.5)
486	243	2	91.4	0	84 (29.3)
				1	97 (43.4)
				2	37 (20.2)
				3	10 (6.5)
				4	2 (1.5)
323	323	1	92.6	0	17 (7.25)
				1	54 (29.7)
				2	36 (23.9)
				3	14 (11.0)
				4	5.5 (5.0)
203	405	0.5	87.5	0	10.1 (5.4)
				1	19 (12.7)
				2	18 (14.8)
				3	13.5 (13.2)
				4	9.2 (10.4)

^a For Me₃SiO[SiH₂O]_nSiMe₃.

They have been prepared by the cohydrolysis of trimethylchlorosilane and dichlorosilane in cold, concentrated hydrochloric acid.^{4,5} The sulfuric acid catalyzed equilibration of the mixed cyclic siloxanes obtained by cohydrolysis of H_2SiCl_2 and Me₂SiCl₂ with hexamethyldisiloxane gave polysiloxanes of type Me₃SiO[SiH₂O]_a[Me₂SiO]_bSiMe₃.⁶ However, individual polysiloxanes were not isolated and characterized. The products only were described as oils of a given viscosity and base-hydrolyzable hydrogen content. Thus, further investigations using currently available methods such as gas chromatography (GLC) and ¹H and ²⁹Si NMR spectroscopy seemed worthwhile.

Results and Discussion

The hydrolysis of dichlorosilane at about -40 to -50 °C in an organic solvent such as diethyl ether, dichloromethane, or pentane with a slight deficiency of water gave chlorine endblocked linear siloxanes, ClSiH₂O[SiH₂O],SiH₂Cl, as well as cyclic polysiloxanes, $[H_2SiO]_n$. For example, in one such experiment, carried out in diethyl ether, the organic layer was distilled to remove solvent and the volatile cyclic $[H_2SiO]_n$ oligomers, leaving behind a 54% yield of a clear, colorless, slightly viscous oil. The 60-MHz proton NMR spectrum of this oil showed two singlets at δ 4.68 and 5.14, due to internal SiH_2O units and terminal $ClSiH_2O$ groups, respectively. The integrated ratio of these signals led to an average constitution of $ClSiH_2O[SiH_2O]_{23}SiH_2Cl$. (The product, no doubt, is composed of a mixture of polymeric species of differing chain length; the molecular weight determination by integration of the ¹H NMR spectrum (internal SiH₂ vs. terminal SiH₂Cl groups) gives the SiH₂/SiH₂Cl ratio, which can be translated into an average chain length, \bar{n} .) The results of a combustion analysis of this product were in fairly good agreement with this formulation. Quite possibly, the nonvolatile product contained some larger $[H_2SiO]_m$ cyclics, but as the yield of the respective oligomers decreased rapidly with increasing m^{2} , their concentration in the product very likely was quite low.

The ²⁹Si NMR spectrum of the product oil showed three triplets at δ_{Si} -30.2, -47.8, and -49.0, with J(Si-H) = 277.6, 260.7, and 257.4 Hz, respectively. These may be assigned to the ClS*i*H₂O, the ClSiH₂OS*i*H₂O and all of the rest of the internal SiH₂O units, respectively. (For comparison, δ_{Si} of [H₂SiO]₅ and of [H₂SiO]₆ and higher cyclic oligomers are -48.9 and -49.2, respectively.)²

Low polymers of type ClSiH₂O[SiH₂O],SiH₂Cl are of interest as potential intermediates for the preparation of silicone block copolymers, for instance, by their reaction with silicone polymers of type HOSiMe₂O[SiMe₂O]_xSiMe₂OH. However, we were also interested in converting the chlorine end-blocked polymers into species with less reactive terminal groups. The reactivity of the terminal Si-Cl bonds made this possible. One means of accomplishing this was with methylmagnesium bromide, but unless low temperatures and short reaction times were used, displacement of some hydrogen (as well as of chlorine) from silicon occurred. Thus, at about -50 °C the product of the reaction of CH₃MgBr with the chlorine endblocked polymer was CH₃SiH₂O[SiH₂O]₀SiH₂CH₃, but a reaction at room temperature gave a polymer containing some internal Si(CH₃)(H)O units as well. Even at low temperature, the methylation process was not straightforward. The yield of soluble product was not high and insoluble silicon-containing materials also were formed. Moverover, the isolated CH₃ end-blocked oil was of lower average molecular weight than the starting material. In one instance, such methylation of ClSiH₂O[SiH₂O]₂₃SiH₂Cl at -50 °C gave CH₃SiH₂O[Si-H₂O]₁₄SiH₂CH₃. The ¹H and ²⁹Si NMR spectra of this product, as well as the combustion analysis, were in excellent agreement with this formulation, with integration of the proton NMR spectrum (internal SiH₂ vs. terminal CH₃ groups) giving the average molecular weight.

Reactions with trialkylsilanols, R_3SiOH , converted $ClSiH_2O[SiH_2O]_{\pi}SiH_2Cl$ polymers to ones of type $R_3SiO-[SiH_2O]_{\pi+2}SiR_3$. Thus, a reaction of $ClSiH_2O[SiH_2O]_{31}Si-H_2Cl$ with trimethylsilanol in diethyl ether at room temperature gave a clear, slightly viscous oil in high yield whose ¹H and ²⁹Si NMR spectra indicated the constitution 1; i.e., a small

amount of attack by the silanol at the Si-H bond had occurred. When this reaction was repeated, initially at -50 °C, with slow warming to room temperature, ¹H NMR spectroscopy showed the virtual absence of contaminating Si(OSiMe₃)(H)O units. Triethylsilanol reacted with ClSiH₂O[SiH₂O]₃₁SiH₂Cl in diethyl ether at room temperature to give 2, as determined by ¹H NMR.

This approach to the preparation of linear $[SiH_2O]_n$ polymers with unreactive terminal groups did not seem very promising, and other routes were examined. The sulfuric acid catalyzed equilibration of cyclic $[H_2SiO]_m$ oligomers with hexamethyldisiloxane at 70 °C resulted in essentially complete disappearance of the cyclic siloxanes and formation of a mixture of linear Me₃SiO[SiH₂O]_nSiMe₃ species. A number of such experiments with different SiH₂O/Me₃SiOSiMe₃ ratios were carried out. The maximum value of this ratio subjected to experiment was 2.8, but use of higher ratios should

 ⁽⁴⁾ British Thomson-Houston Co., Ltd. British Patent 638 586, 1950; Chem. Abstr. 1950, 44, 8104.

 ⁽⁵⁾ Wilcock, D. F.; Hurd, D. T. U.S. Patent 2 547 678, 1951; Chem. Abstr. 1951, 45, 8029.
(1) P. L. D. P. LLD. Patent 2 500 (20) 1057. Clim. 414.

 ⁽⁶⁾ Bailey, D. L.; York, E. R. U.S. Patent 2810 628, 1957; Chem. Abstr. 1958, 52, 1516; British Patent 788 983, 1958; Chem. Abstr. 1958, 52, 14652.

Table II. Equilibration of $[H_2SiO]_m$ with Me₃SiOSiMe₃ (SiH₂O/Me₃SiOSiMe₃ Molar Ratio 2.80)^a

"n" in Me ₃ SiO[SiH ₂ O] _n SiMe ₃	amt, mmol	mol % of total Me ₃ SiO[SiH ₂ O] _n SiMe ₃
0	1.20	8.05
1	3.49	23.4
2	3.86	25.9
3	2.78	18.6
4	1.65	11.1
5	0.92	6.17
6	0,48	3.22
7	0.25	1.68
8	0.13	0.87

^a Reaction of 14.2 mmol of $Me_3SiOSiMe_3$, 39.7 mmol of SiH_2O , 0.046 g of concentrated H_2SO_4 , and 0.49 g of CH_2Cl_2 for 3 h at 70 °C.

give linear materials of higher molecular weight. (Note that the action of concentrated sulfuric acid on a neat mixture of cyclic $[H_2SiO]_m$ gave an elastomeric material.)² GLC analysis of the reaction mixture when the SiH₂O/Me₃SiOSiMe₃ ratio was 2.80 gave the composition shown in Table II. The species formed in these equilibration reactions appear to be less disperse than the random distribution as calculated from the Flory theory of random rearrangement as adapted to siloxane polymers by Carmichael and Heffel.⁷ This could be due in part to inaccuracies in the data caused by the necessity of extrapolating GLC weight response factors past Me₃SiO-[SiH₂O]₂SiMe₃. However, the major part of the deviation very likely is due to the fact that the standard free energy of a siloxane linkage in a very short linear chain is different from the free energy of an isolated siloxane linkage in a longer chain.

Finally, another potential route to linear polysiloxanes of the type $R_3SiO[SiH_2O]_SiR_3$ is the cohydrolysis of H_2SiCl_2 with a monochlorosilane, R₃SiCl.^{4,5} In our first experiments, a large excess of water was added to a solution of dichlorosilane and 2 mol equiv of trimethyl- or dimethylchlorosilane in diethyl ether at 0-10 °C. Isolation by GLC and characterization of the major products soon showed that these were not the right reaction conditions. Substantial amounts of products in which a Si-H function had been replaced by a SiOSiMe₃ or SiOSiMe₂H function were present. Thus, in such an experiment in which trimethylchlorosilane was used as the endblocking reagent the following products were obtained in the weight percent of total hydrolysate indicated: Me₃SiOSiMe₃ (24); $Me_3SiOSiH_2OSiMe_3$ (25); $Me_3SiO[SiH_2O]_2SiMe_3$ (7.5); $Me_{3}SiO[SiH_{2}O]_{3}SiMe_{3}$ (<1); $[Me_{3}SiO]_{3}SiH$ (12); [Me₃SiO]₂Si(H)OSiH₂OSiMe₃ (14). Without doubt, it is the hydrochloric acid formed in the hydrolysis reaction that is responsible for the reaction at the Si-H bonds, since the SiH function is well-known to be subject to acid-catalyzed hydrolysis.8 In order to avoid acid-induced Si-H hydrolysis, the cohydrolysis of H₂SiCl₂ with Me₃SiCl and Me₂HSiCl was carried out with a 1:1 NaH₂PO₄/Na₂HPO₄ pH 7 buffer system. This approach was successful, and best results were obtained when a cold solution of the chlorosilanes in diethyl ether was added to a large excess of the cold $(0-5 \,^{\circ}\text{C})$ aqueous buffer solution. Application of this procedure to the cohydrolysis of a 2:1 (molar) mixture of Me₃SiCl and H₂SiCl₂ gave $Me_3SiOSiMe_3$ (44), $Me_3SiOSiH_2OSiMe_3$ (28), $Me_3SiO[SiH_2O]_2SiMe_3$ (18), $Me_3SiO[SiH_2O]_3SiMe_3$ (7.5), and none of the products derived from attack at Si-H.⁹ This approach was equally successful in the cohydrolysis of Me_2HSiCl/H_2SiCl_2 mixtures.

With a useful procedure for the cohydrolysis of dichlorosilane in hand, we carried out some experiments in which the Me_3SiCl/H_2SiCl_2 ratio was varied. The results are given in Table I. No significant amounts of cyclic [H₂SiO]_m products were observed in these experiments. Traces of unidentified products were found in the cohydrolysis of Me₃SiCl and H_2SiCl_2 in 1:2 ratio, and these might have been cyclic $[H_2SiO]_m$ species. The yields of hydrolysate obtained in these experiments (after water wash of the ether layer and removal of solvent) were 90% or better. As expected, the percentage of volatile products in the hydrolysate, Me₃SiO[SiH₂O], SiMe₃ (n = 0-4), decreased as the Me₃SiCl/H₂SiCl₂ ratio was decreased, and larger amounts of higher molecular weight material (n > 4) were formed. Thus, use of still lower Me₃SiCl/H₂SiCl₂ ratios should give long-chain Me₃SiO-[SiH₂O], SiMe₃ species, but the formation of cyclic [H₂SiO], products should become more important as well.

Of the three methods for the preparation of linear $[SiH_2O]_n$ polymers with unreactive end groups that we have studied, the equilibration of the $[H_2SiO]_m$ cyclic oligomers with hexamethyldisiloxane appears to be the most easily effected. With a useful route for the preparation of such polysiloxanes now available, the way is open for studies of their properties and for the development of possible applications.

Comments Concerning the Spectroscopic Properties of the Si-H Bond in Polysiloxanes. The present studies have provided a number of polysiloxanes containing Si-H bonds, thus permitting an investigation of the effect of the molecular environment on the Si-H stretching frequency in the IR spectrum and on the proton chemical shift in the NMR spectrum.

The Si-H stretching frequency in a Me₃SiO[SiH₂O]_nSiMe₃ system depends on the number of SiH₂O groups in the chain. ν (SiH): Me₃SiOSiH₂OSiMe₃, 2158 cm⁻¹; Me₃SiO-[SiH₂O]₂SiMe₃, 2170 cm⁻¹; Me₃SiO(SiH₂O)₃SiMe₃, 2178 cm⁻¹.

The same is true for HMe₂SiO[SiH₂O]_nSiMe₂H systems. ν (SiH): HMe₂SiOSiH₂OSiMe₂H, 2160 cm⁻¹ (ν (SiH) of HMe₂Si, 2137 cm⁻¹); HMe₂SiO[SiH₂O]₂SiMe₂H, 2175 cm⁻¹ (ν (SiH) of HMe₂Si, 2140 cm⁻¹); HMe₂SiO[SiH₂O]₃SiMe₂H, 2181 cm⁻¹ (ν (SiH) of HMe₂Si, 2140 cm⁻¹).

The limiting value of 2190–2195 cm⁻¹ is reached in systems with longer SiH₂O chains. ν (SiH): MeSiH₂O-[SiH₂O]_nSiH₂Me ($\bar{n} \sim 15$), 2194 cm⁻¹; Me₃SiO-[SiH₂O]_nSiMe₃ ($\bar{n} \sim 27$), 2190 cm⁻¹; Et₃SiO[SiH₂O]_nSiEt₃ ($\bar{n} \sim 26$), 2190 cm⁻¹; ClSiH₂O[SiH₂O]_nSiH₂Cl ($\bar{n} \sim 24$), 2195 cm⁻¹.

The Si-H stretching frequencies of $-OSiH_2O-$, HMe_2SiO- , and O_3SiH units are easily distinguished. $\nu(SiH)$: $[HMe_2SiO]_3SiH$, 2219 cm⁻¹ (O_3SiH), 2137 cm⁻¹ (HMe_2Si); (HMe_2SiO) $_2Si(H)OSiH_2OSiMe_2H$, 2172 cm⁻¹ (SiH_2); 2140 cm⁻¹ (HMe_2Si), 2220 cm⁻¹ (O_3SiH); $[Me_3SiO]_3SiH$, 2205 cm⁻¹; $[Me_3SiO]_2Si(H)OSiH_2OSiMe_3$; 2171 cm⁻¹ (SiH_2), 2205 cm⁻¹ (O_3SiH). Thus, the Si-H stretching frequency provides good qualitative indication of the types of Si-H bonds that are present in the siloxane system.

The proton chemical shift of an SiH₂ unit in a polysiloxane also is dependent on its environment: Me₃SiOSiH₂OSiMe₃, δ_{SiH} 4.50; Me₃SiO[SiH₂O]₂SiMe₃, δ_{SiH} 4.57; Me₃SiOSiH₂^aOSiH₂^bOSiH₂^aOSiMe₃, δ_{SiH^4} 4.59, δ_{SiH^6} 4.64; CH₃SiH₂O[SiH₂O]_nSiH₂CH₃, δ_{SiH} 4.67, δ_{MeSiH_2} 4.63; Et₃SiO[SiH₂O]_nSiEt₃, δ_{SiH} 4.65; ClSiH₂O[SiH₂O]_nSiH₂Cl, δ_{SiH} 4.68, $\delta_{SiH,Cl}$ 5.14.

Experimental Section

General Comments. Dichlorosilane was purchased in gas cylinders containing 10 lb of material from the Linde Division of the Union Carbide Corp. Since explosions could result if suck-back occurs, a regulator outlet equipped with a diffusion-resistant diaphragm seal valve and a check valve is essential in the setup for dispensing H_2 -

⁽⁷⁾ Carmichael, J. B.; Heffel, J. J. Phys. Chem. 1965, 69, 2213.

⁽⁸⁾ Eaborn, C. "Organosilicon Compounds"; Butterworths: London, 1961.

⁽⁹⁾ On the basis of these observations, it seems likely that the earlier cohydrolysis experiments involving Me₃SiCl/H₃SiCl₂ mixtures^{4,5} also took place with partial hydrolysis of Si-H bonds.

Linear Polysiloxanes from Dichlorosilane

 $SiCl_2$ ¹⁰ Note that it has been reported¹¹ that H_2SiCl_2/air mixtures can detonate violently.

IR spectra were recorded on a Perkin-Elmer 283B infrared spectrophotometer, proton NMR spectra with a Hitachi Perkin-Elmer R24B spectrometer, and ²⁹Si NMR spectra with a JEOL FX-90Q spectrometer operating at 17.76 MHz. A small amount of a relaxation agent, chromium(III) acetylacetonate, was added to all sample solutions in benzene- d_6 . Some proton NMR spectra were recorded with a Bruker WM-270 instrument. CDCl₃ was the solvent used in all proton NMR measurements.

Preparation of Linear, Chlorine End-Blocked Polysiloxanes from Dichlorosilane. This experiment was carried out with a 300-mL three-necked, round-bottomed flask equipped with a magnetic stir bar, a pentane thermometer, a no-air septum, an addition funnel, and argon inlet tube, and a cold condenser. Diethyl ether (150 mL) was cannulated into the argon-filled flask that then was cooled in a dry ice/2-propanol bath to ca. -40 °C. Dichlorosilane was quantified (35.6 mL, 43.4 g, 0.43 mol) by condensing it into a graduated trap (at -40 °C), allowing the condensed liquid to warm nearly to room temperature, and then measuring the condensate volume (H_2SiCl_2) density is 1.22 g/cm³ at 25 °C), before bubbling it as the vapor into the cold ether. Distilled water (7.20 g, 0.40 mL) was added dropwise over 7 min. The cold bath then was removed, and the clear, colorless reaction mixture was stirred at room temperature for 30 min. Subsequently the solvent and volatiles were removed by trap-to-trap distillation (room temperature (0.1 mmHg)) into a cold trap. A clear, colorless, slightly viscous oil remained behind (10.85 g, 53% yield). The 60-MHz ¹H NMR spectrum (in CDCl₃) showed singlets at δ 4.7 (OSiH₂O) and 5.15 (SiH₂Cl) in an integrated ratio of 15.5, which indicates the average constitution ClSiH2O[SiH2O]31SiH2Cl. This oil was rapidly converted to an insoluble, brittle solid on exposure to atmospheric moisture, and HCl was evolved.

GLC analysis of the trap-to-trap distillate showed the presence of $[H_2SiO]_4$ (25.5% by weight of GLC-detected products), $[H_2SiO]_5$ (66%), $[H_2SiO]_6$ (5.3%), $[H_2SiO]_7$ (1.6%), and $[H_2SiO]_8$ (0.8)%. (Note characterization of these in ref 2.) The distillate was concentrated (atmospheric pressure, 40 °C maximum pot temperature) to leave 8.3 g of a clear liquid whose ¹H NMR spectrum showed only a singlet at δ 4.7. GLC analysis of this liquid showed the presence of the following cyclic $[H_2SiO]_m$ (*m*, weight percent of total $[H_2SiO]_n$ given): 4, 17; 5, 47; 6, 17.5; 7, 7.5; 8, 4.2; 9, 2.4; 10, 1.7; 11, 1.1; 12, 0.6; 13, 0.35; 14, 0.2; 15, trace.

In another such experiment, 42.0 g of H₂SiCl₂ in 150 mL of diethyl ether was treated with 6.83 g of water (same procedure) to give, after trap-to-trap distillation, 10.8 g (54%) of a clear, colorless oil. The proton NMR spectra showed the same singlets; their integrated ratio indicated the average composition ClSiH₂O[SiH₂]₂₃SiH₂Cl. Anal. Calcd for Si₂₅H₃₀O₂₄Cl₂: Si, 58.15; H, 4.17; Cl, 5.87. Found: Si, 57.03; H, 4.15; Cl, 5.27. IR (neat, KBr plates): 2195 (vs, ν (SiH)), 1100 (br, vs, ν_{as} (SiOSi)), 1000–830 with maximum at 850 (br, vs, δ (SiH₂) region), 720 (vs, γ (SiH)), 530 (m, SiCl?) cm⁻¹. ²⁹Si NMR (C₆D₆): δ –30.2 (t, J(²⁹Si⁻¹H) = 277.6 Hz, ClSiH₂), -47.8 (t, J-(²⁹Si⁻¹H) = 260.7 Hz, ClSiH₂OSiH₂⁻), -49.0 (t, J(²⁹Si⁻¹H) = 257.4 Hz, all other SiH₂O).

When the hydrolysis of dichlorosilane (0.43 mol) with 0.40 mol of water was carried out in pentane (150 mL) medium at \sim -40 °C by this procedure, the water crystallized as it was added. Upon removal of the cold bath, as the mixture warmed, the reaction commenced and a large amount of HCl was evolved, forming bubbles on the surface of the ice. The ice disappeared within 45 min, and a second liquid phase remained. The usual workup left 9.95 g (49%) of residue after trap-to-trap distillation. Integration of the δ 4.7 and 5.15 signals in the NMR spectrum established the average composition ClSiH₂OD₁₇₆SiH₂Ol₃ (35.6%), [H₂SiO]₆ (7.3%), and [H₂SiO]₇ (0.9%) (weight percent of total amount of GLC-detected siloxanes).

Reactions. CISiH₂O[SiH₂O],SiH₂Cl with Methylmagnesium Bromide. A 250-mL three-necked flask equipped with a magnetic stir bar, a low-temperature thermometer, an argon inlet tube, and an addition funnel was charged with 8.40 g of CISiH₂O[SiH₂O]₂₃-

SiH₂Cl (average composition), 30 mL of dry hexane, and 20 mL of dry Et₂O. The solution was cooled to -40 °C, and a solution of 0.04 mol of CH₃MgBr in Et₂O was added dropwise over 5 min. A white precipitate resulted. After 30 min following completion of the addition, 0.046 mol of Me₃SiCl was added to quench unconverted CH₃MgBr. The reaction mixture was warmed to room temperature and stirred for 1 h. Filtration (drybox) left a white solid that contained magnesium halide and a large amount of silicon-containing material. Removal of volatiles from the filtrate by trap-to-trap distillation (room temperature (0.1 mmHg)) left 3.7 g of a slightly viscous oil, $n^{20}D = 1.3951$. The 60-MHz ¹H NMR spectrum (CDCl₃) showed a triplet at δ 0.34 (CH₃), a quartet ($J \sim 3$ Hz) at δ 4.63 (CH₃SiH₂), and a singlet at δ 4.67 (OSiH₂O) with $J(^{29}\text{Si}-^{1}\text{H}) = 255$ Hz. Integration of the δ 4.67 and 0.34 signals gave the average composition CH₃SiH₂O[Si- $H_2O]_{14}SiH_2CH_3$. Anal. Calcd for $C_2H_{38}O_{15}Si_{16}$: C, 3.20; H, 5.09; Si, 59.78. Found: C, 3.35; H, 5.08; Si, 59.95. IR (neat, KBr plates): 2964 (m, vas(CH₃)), 2194 (vs, v(SiH)), 1258 (m, Si-CH₃), 1095 (br, vs, $v_{as}(SiOSi)$, 1000–830 with maximum at 850 (br, vs), 715 (vs, γ (SiH)). ²⁹Si NMR (C₆D₆): δ _{Si} -19.4 (t, $J(^{29}Si^{-1}H) = 219$ Hz, $CH_{3}SiH_{2}$, -48.2 (t, $J(^{29}Si^{-1}H) = 254.1$ Hz, $CH_{3}SiH_{2}OSiH_{2}$), -49.0 $(t, J(^{29}Si^{-1}H) = 257.4 \text{ Hz}, \text{ all other } SiH_2).$

When such a reaction was carried out at room temperature (using 8.5 g of the ClSiH₂O[SiH₂O],SiH₂Cl obtained by hydrolysis of 0.432 mol of H₂SiCl₂ with 0.41 mol of H₂O in 150 mL of Et₂O at -40 °C), otherwise with the same procedure, in the addition of 0.027 mol of CH₃MgBr and 0.046 mol of Me₃SiCl, 6.0 g of a clear, slightly viscous oil, $n^{20}D = 1.3973$, was obtained. The ¹H NMR spectrum was identical with the one of the product of the -50 °C reaction above except for the presence of doublet at δ 0.24 ($J \sim 3$ Hz), indicative of some -OSi(H)(CH₃)O- units in the chain. Integration of the appropriate signals in the NMR spectrum established the average composition CH₃SiH₂O[SiH₂O]_{30,33}[Si(H)(CH₃)O]_{1,33}SiH₂CH₃. The ²⁹Si NMR spectrum (C₆D₆) of this product showed the presence of the -OSi-(H)(CH₃)O- unit: an additional signal at δ_{Si} -2.0 was observed. Anal. Calcd for C_{3,33}H_{76,64}O₃₃Si₃₄: C, 2.50; H, 4.83; Si, 59.68. Found: C, 2.30; H, 4.82; Si, 58.68.

CISiH₂O[SiH₂O]₇SiH₂Cl with Trialkylsilanols. (a) Trimethylsilanol. A 10-mL three-necked flask equipped with a magnetic stir bar, a no-air rubber septum, a thermometer, and an argon inlet tube was charged with 1.4762 g of $ClSiH_2O[SiH_2O]_{31}SiH_2Cl$ and 4 mL of dry Et_2O . Trimethylsilanol (0.491 g, 5.45 mmol, prepared¹² by W.-L. Wang) was then added all at once. A second liquid phase separated, and a small amount of gas was evolved. The reaction mixture was stirred at room temperature for 15 min and then was trap-to-trap distilled (room temperature (0.1 mmHg)) to remove volatiles. A clear, slightly viscous liquid (1.6473 g; $n^{20}D = 1.3957$) remained behind. Its proton NMR spectrum (CDCl₃) showed a singlet at δ 0.16 (Me₃Si), a small resonance at δ 4.36 (O₃SiH), a singlet at δ 4.55 (Me₃SiOSiH₂), and a singlet at δ 4.62 (all other SiH₂). Integration of the appropriate signals established the composition Me₃SiO[SiH₂O]₂₇(Si(H)- $(OSiMe_3))_{2,0}SiMe_3$. The ²⁹Si NMR spectrum (C_6D_6) showed the Me₃Si signal at δ_{Si} +12.7, SiH₂ resonances at δ_{Si} -49.0, -49.6, -50.3, and -51.0, and the O₃SiH resonance at δ_{Si} -82.3. Anal. Calcd for $C_{12}H_{92}O_{32}Si_{33}$: C, 8.60; H, 5.53; Si, 55.31. Found: C, 8.64; H, 5.55; Si, 55.44.

A similar reaction, carried out initially at -50 °C, with subsequent warming to room temperature, gave, after removal of volatiles, a slightly viscous oil, $n^{20}D = 1.3975$, in 94% yield. The ¹H NMR spectrum of this product showed no signal at δ 4.36 due to -OSi-(H)(OSiMe₃O)- units.

(b) Triethylsilanol. Triethylsilanol (1.76 g, 0.12 mol, Petrarch) was added by syringe to a solution of 7.6 g of $ClSiH_2O[SiH_2O]_{31}$ -SiH₂Cl in 20 mL of dry Et₂O under argon. The resulting solution was stirred at room temperature for 30 min and then was trap-to-trap distilled (room temperature (0.1 mmHg)). The residue was a colorless oil (8.4 g; $n^{20}D = 1.4086$). The ¹H NMR spectrum (CDCl₃) showed a multiplet at δ 0.5–1.2 due to the Et₃Si group, a singlet at δ 4.65 due to SiH₂, and a very small signal at δ 4.36 due to O₃SiH. Integration of the appropriate signals estalished the average composition Et₃SiO[SiH₂O]₂₆₄[Si(H)(OSiEt₃)]_{0.22}SiEt₃. The ²⁹Si NMR spectrum (C₆D₆) showed the Et₃Si signal at δ_{Si} +15.0, SiH₂ resonances at δ_{Si}

⁽¹⁰⁾ Materials Safety Data Sheet, Union Carbide Silane A-199 (Linde Division, Union Carbide Corp.); Linde Specialty Gases Safety Precautions and Emergency Procedures, F-12-237.

⁽¹¹⁾ Sharp, K. G.; Arvidson, A.; Elvey, T. C. J. Electrochem. Soc. 1982, 129, 2346.

⁽¹²⁾ Me₃SiOH was prepared by the hydrolysis of hexamethyldisilazane in the presence of HCI: Sauer, R. O. J. Am. Chem. Soc. 1944, 66, 1707. Shostakovskii, M. F.; Shikhiev, I. A.; Kochkin, D. A.; Belyaev, V. I. J. Gen. Chem. USSR (Engl. Transl.) 1954, 24, 2175.

Table III. Equilibration of $[H_2SiO]_m$ with Me₃SiOSiMe₃ (SiH₂O/Me₃SiOSiMe₃ Molar Ratio 1.79)^{*a*}

"n" in Me ₃ SiO[SiH ₂ O] _n SiMe ₃	amt, mmol	mol % of total Me ₃ SiO[SiH ₃ O] _n SiMe ₃
0	4.18	19.0
1	7.18	32.6
2	5.65	25.7
3	2.97	13.5
4	1.21	5.50
5	0.43	1.95
6	0.13	0.59
7	0.033	0.15

 a Reaction of 20.4 mmol of Me_3SiOSiMe_3, 36.5 mmol of SiH_2O, 0.0418 g of concentrated H_2SO_4, and 0.395 g of CH_2Cl_2 for 5 h at 70 °C.

-49.0, -49.8, -50.3, and -50.9, and the O₃SiH signal at δ_{Si} -82.4. Anal. Calcd for C_{13.3}H_{86.3}O_{27.8}Si_{28.8}: C, 10.64; H, 5.80; Si, 53.91. Found: C, 10.67; H, 5.74; Si, 53.01.

Sulfuric Acid Catalyzed Equilibration of Cyclic [H2SiO], Oligomers with Hexamethyldisiloxane. A mixture of cyclic $[H_2SiO]_m$ oligomers was prepared as follows. a 1-L three-necked round-bottomed flask equipped with a magnetic stir bar, an argon inlet tube, a no-air rubber septum, a low-temperature thermometer, and a cold condenser was filled with argon, and 500 mL of dichloromethane was added. The flask was cooled to \sim -40 °C, and then 68.4 g (0.641 mol) of H₂SiCl₂ (quantified as described above) was bubbled into the dichloromethane. Distilled water (11.0 g, 0.615 mol) was added by syringe over 20 min. Ice formed in the mixture. Subsequently, the temperature was allowed to rise slowly to -10 °C. The hydrolysis reaction became rapid at ~-15 °C as evidenced by HCl evolution and ice consumption. The colorless solution that was obtained on warming to room temperature was washed with five 350-mL portions of cold water. The organic layer was separated and dried over MgSO₄ while being kept at -8 °C. Filtration was followed by distillation at atmospheric pressure until a pot temperature of 75 °C. A clear liquid (28.2 g) remained behind. A 26.6-g portion of this liquid was trap-to-trap distilled (heat gun (0.05 mmHg)) into a receiver at -196 °C. The residue (10.3 g) was a slightly viscous oil. The distillate (16.3 g) was examined by GLC and by ¹H NMR. It contained 19% by weight of CH_2Cl_2 and 81% $[H_2SiO]_m$. The composition of the latter (m, wt%) was as follows: 4, 12.2; 5, 51.8; 6, 24.1; 7, 5.3; 8, 2.45; 9, 1.8; 10, 1.2; 11, 0.66; 12, 0.29; 13, 0.05. This mixture was used in the equilibration reaction.

Predetermined amounts of the $[H_2SiO]_m$ and hexamethyldisiloxane and sulfuric acid (Mallinckrodt-ACS, 95.4%) (about 1 wt%) were charged into a 10-mL round-bottomed flask equipped with an argon inlet, a magnetic stir bar, a water-cooled condenser, and a no-air rubber septum. The reaction mixtures were stirred and heated under argon at 70 °C for about 3 h. After cooling to room temperature, they were washed with dilute sodium bicarbonate and then with water and dried.

The equilibrated mixtures were analyzed by GLC (Hewlett-Packard Model 5750 linear temperature-programmed gas chromatograph, 6 ft \times ¹/₄ in. column packed with 20% SE-30 silicone rubber gum on 80-100 mesh Chromosorb P (acid washed and treated with Me₂SiCl₂); 30-250 °C temperature program at 10 °C/min; toluene internal standard). Empirical weight response factors for Me₃SiOSiMe₃, Me₃SiOSiH₂OSiMe₃, and Me₃SiO(SiH₂O)₂SiMe₃ were determined. For higher Me₃SiO[SiH₂O]_nSiMe₃ the response factors were estimated by extrapolation. The results of the experiments that were carried out are given in Tables II-V.

At room temperature, such equilibrations were very much slower. Cohydrolysis of Dichlorosilane and Trimethylchlorosilane and Dimethylchlorosilane. (a) Addition of the Aqueous System to the Chlorosilanes. As an example, a cohydrolysis of Me₂HSiCl with H₂SiCl₂ is described.

A 200-mL three-necked flask equipped with a gas inlet tube, a cold condenser, an addition funnel, and a magnetic stir bar was evacuated and filled with nitrogen and then was charged with 23.82 g (0.252 mol) of Me₂HSiCl and 60 mL of diethyl ether. The solution was cooled to 0-5 °C, and then, with the procedure described above, 12.7 g (0.126 mol) of H₂SiCl₂ was allowed to evaporate into the solution. Subsequently, 5.0 mL of distilled water was added, dropwise over 10 min, while the temperature in the flask was maintained at 0-10 °C. Then, another 50 mL of water was added more rapidly, and the

Table IV. Equilibration of $[H_2SiO]_m$ with Me₃SiOSiMe₃ (SiH₂O/Me₃SiOSiMe₃ Molar Ratio 0.90)^a

"n" in Me ₃ SiO[SiH ₂ O] _n SiMe ₃	amt, mmol	mol % of total Me ₃ SiO{SiH ₂ O] _n SiMe ₃
0	4,30	36.8
1	4.67	40.0
2	2.01	17.2
3	0.58	4.97
4	0.10	0.85
5	0.015	0.13

 a Reaction of 10.7 mmol of Me_3SiOSiMe_3, 9.6 mmol of SiH_2O, 0.0512 g of concentrated H_2SO_4, and 0.103 g of CH_2Cl_2 for 3 h at 70 °C.

Table V. Equilibration of $[H_2SiO]_m$ with Me₃SiOSiMe₃ (SiH₂O/Me₃SiOSiMe₃ Molar Ratio 0.60)^a

"n" in Me ₃ SiO[SiH ₂ O] _n SiMe ₃	amt, mmol	mol % of total Me ₃ SiO[SiH ₂ O] _n SiMe ₃
0	7.91	52.5
1	5.38	35.7
2	1.55	10.3
3	0.20	1.32
4	0.037	0.25

^a Reaction of 14.1 mmol of $Me_3SiOSiMe_3$, 8.6 mmol of SiH_2O , 0.046 g of concentrated H_2SO_4 , and 0.093 g of CH_2Cl_2 for 3 h at 70 °C.

resulting mixture was stirred for 3 h at room temperature. The ether layer then was separated and washed with distilled water until the washings were neutral. Drying over anhydrous MgSO₄ was followed by removal of the solvent by careful distillation under nitrogen at atmospheric pressure. The composition of the residue was examined by GLC, and samples of the lower boiling products were collected by GLC for spectroscopic and analytical characterization.

When an excess of water was added to a 1:2 mixture of H_2SiCl_2 and Me_3SiCl in diethyl ether by this procedure, the following products were isolated by GLC: $Me_3SiOSiMe_3$ (24% by weight of major producst), $Me_3SiOSiH_2OSiMe_3$ (25), $Me_3SiO[SiH_2O]_2SiMe_3$ (7.5), $Me_3SiO[SiH_2O]_3SiMe_3$ (<1), $[Me_3SiO]_3SiH$ (12), $[Me_3SiO]_2Si-$ (H)OSiH_2OSiMe_3 (14).

A similar addition of water to an ether solution of H_2SiCl_2 and Me_2HSiCl in 1:2 molar ratio gave the following results: $Me_2HSiOSiMe_2H$ (31), $HMe_2SiOSiH_2OSiMe_2H$ (3.3), $HMe_2SiO-[SiH_2O]_2SiMe_2H$ (1.7), $HMe_2SiO[SiH_2O]_3SiMe_2H$ (<1), $[HMe_2SiO]_3SiH$ (29), $[HMe_2SiO]_2Si(H)OSiH_2OSiMe_2H$ (12).

Addition instead of a 1:1 NaH₂PO₄/NaH₂PO₄ buffer solution to an ether solution of H₂SiCl₂ and Me₂HSiCl in 1:2 molar ratio gave the following results: Me₂HSiOSiMe₂H (37), HMe₂SiOSiH₂OSiMe₂H (31), HMe₂SiO[SiH₂O]₂SiMe₂H (13), HMe₂SiO[SiH₂O]₃SiMe₂H (3.7), [HMe₂SiO]₃SiH (3.7), [HMe₂SiO]₂Si(H)OSiH₂OSiMe₂H (5.6).

(b) Addition of the Chlorosilanes to an Aqueous 1:1 NaH_2PO_4/Na_2HPO_4 Buffer Solution. As an example, a cohydrolysis of Me₂HSiCl and H₂SiCl₂ is described.

A 2-L three-necked round-bottomed flask equipped with a nitrogen inlet tube, a cold condenser, a mechanical stirrer, and a no-air rubber septum was evacuated and filled with nitrogen. It then was charged with 138 g (1 mol) of NaH₂PO₄·H₂O and 142 g (1 mol) of Na₂HPO₄ and 1200 mL of distilled water. The resulting solution was cooled to 0-5 °C. A 200-mL three-necked flask equipped with a gas inlet tube, a cold condenser, and a magnetic stir bar was evacuated and filled with nitrogen and then was charged with 45.93 g (0.486 mol) of Me₂HSiCl and 109 mL of diethyl ether. This solution was cooled to 0-5 °C, and the 24.5 g (0.243 mol) of H₂SiCl₂ was added by the procedure described above.

The Me_2HSiCl/H_2SiCl_2 solution then was added via cannula with nitrogen pressure to the aqueous buffer solution over 10 min. The organic layer was separated, washed with distilled water, dried over MgSO₄ and distilled to remove solvent. The residual liquid was examined by GLC. Pure samples of the lower boiling products for spectroscopic and analytical characterization were isolated by GLC.

This experiment gave the following products in the indicated weight percent of the major products: $(Me_2HSi)_2O$ (54), $HMe_2SiOSiH_2OSiMe_2H$ (18), $HMe_2SiO[SiH_2O]_2SiMe_2H$ (13), $HMe_2SiO[SiH_2O]_3SiMe_2H$ (8.0). [HMe₂SiO]₃SiH and [HMe₂SiO]₂Si(H)OSiH₂OSiMe₂H were not present.

Addition of a 1:2 mixture of H₂SiCl₂ and Me₃SiCl in Et₂O to the buffer solution at 0-10 °C gave the following products: Me₃SiOSiMe₃ (44), $Me_3SiOSiH_2OSiMe_3$ (28), $Me_3SiO[SiH_2O]_2SiMe_3$ (18), Me₃SiO[SiH₂O]₃ SiMe₃ (7.5). Here also, products of Si-H hydrolysis were not present.

More such Me₃SiCl/H₂SiCl₂ cohydrolysis experiments are summarized in Table I. The following siloxanes were isolated and characterized.

 $Me_3SiOSiH_2OSiMe_3$; $n^{20}D = 1.3809$. Anal. Calcd for $C_6H_{20}O_2Si_3$: C, 34.57; H, 9.67. Found: C, 34.51; H, 9.69. ¹H NMR (CDCl₃): δ 0.14 (s, 18 H, Me₃Si), 4.50 (s, 2 H, SiH₂, $J(^{29}Si^{-1}H) = 243$ Hz). Me₃SiO[SiH₂O]₂SiMe₃: $n^{20}D = 1.3828$. Anal. Calcd for

 $C_6H_{22}O_3Si_4$: C, 28.31; H, 8.71. Found: C, 28.38; H, 8.67. ¹H NMR $(CDCl_3)$: $\delta 0.15$ (s, 18 H, Me₃Si), 4.57 (s, 4 H, SiH₂, $J(^{29}Si^{-1}H)$ = 248 Hz)

 $Me_3SiO[SiH_2O]_3SiMe_3$: $n^{20}D = 1.3847$. Anal. Calcd for C₆H₂₄O₄Si₅: C, 23.97; H, 8.05. Found: C, 24.24; H, 8.13. ¹H NMR (CDCl₃): δ 0.15 (s, 18 H, Me₃Si), 4.59 (s, 4 H, Me₃SiOSiH₂, J- $(^{29}\text{Si}-^{1}\text{H}) = 252 \text{ Hz}), 4.64 \text{ (s, 2 H, center SiH}_2, J(^{29}\text{Si}-^{1}\text{H}) = 252$ Hz).

 $[Me_3SiO]_3SiH: n^{20}D = 1.3861$. Anal. Calcd for $C_9H_{28}O_3Si_4$: C, 36.44; H, 9.51. Found: C, 36.18; H, 9.57. ¹H NMR (CDCl₃): δ 0.12 (s, 27 H, Me₃Si), 4.20 (s, 1 H, SiH).

 $[Me_3SiO]_2Si(H)OSiH_2OSiMe_3$: $n^{20}D = 1.3882$. Anal. Calcd for C₉H₃₀O₄Si₅: C, 31.54; H, 8.82. Found: C, 31.69; H, 8.93. ¹H NMR (CDCl₃): δ (0.15 (s, 27 H, Me₃Si), 4.20 (s, 1 H, O₃SiH), 4.54 (s, 2 H, SiH₂).

 $HMe_2SiOSiH_2OSiMe_2H$: $n^{20}D = 1.3756$. Anal. Calcd for C₄H₁₆O₂Si₃: C, 26.63; H, 8.94. Found: C, 26.85; H, 8.82. ¹H NMR $(CDCl_3)$: δ 0.23 (d, 12 H, Me₂Si), 4.53 (s, 2 H, SiH₂, $J(^{29}Si^{-1}H)$

= 248 Hz), 4.68 (hept, 2 H, Me₂SiH).

HMe₂SiO[SiH₂O]₂SiMe₂H: $n^{20}D = 1.3798$. Anal. Calcd for C₄H₁₈O₃Si₄: C, 21.21; H, 8.01. Found: C, 21.12; H, 7.95. ¹H NMR $(CDCl_3)$: $\delta 0.23$ (d, 12 H, Me₂Si), 4.58 (s, 4 H, SiH₂, $J(^{29}Si^{-1}H)$

250 Hz), 4.69 (hept, 2 H, Me₂SiH). HMe₂SiO[SiH₂O]₃SiMe₂H: $n^{20}D = 1.3823$. Anal. Calcd for C₄H₂₀O₄Si₅: C, 17.62; H, 7.39. Found: C, 17.60; H, 7.33.

 $[HMe_2SiO]_3SiH: n^{20}D = 1.3822$. Anal. Calcd for C₆H₂₂O₃Si₄: C, 28.31; H, 8.71. Found: C, 28.22; H, 8.65. ¹H NMR (CDCl₃): δ 0.22 (d, 18 H, Me₂Si), 4.20 (s, 1 H, O₃SiH), 4.69 (hept, 3 H, Me_2SiH).

 $[HMe_2SiO]_2Si(H)OSiH_2OSiMe_2H: n^{20}D = 1.3845$. Anal. Calcd for C₆H₂₄O₄Si₅: C, 23.97, H, 8.05. Found: C, 23.95; H, 8.02. ¹H NMR (CDCl₃): δ 0.23 (d, 18 H, Me₂Si), 4.25 (s, 1 H, O₃SiH), 4.58 $(s, 2 H, SiH_2), 4.70$ (hept, 3 H, Me₂SiH).

Acknowledgment. The authors are grateful to the U.S. Air Force Office of Scientific Research, (NC)-AFSC, and to the Rhône-Poulenc Co. for support of this research. D.S. acknowledges, with thanks, an Alexander von Humboldt Prize, awarded by the Alexander von Humboldt Foundation, Bad Godesberg, during the tenure of which this paper was written.

Registry No. SiH₂Cl₂, 4109-96-0; CH₃Br, 74-83-9; Me₃SiOH, 1066-40-6; Et₃SiOH, 597-52-4; Me₃SiOSiMe₃, 107-46-0; Me₃SiCl, 75-77-4; Me₂SiHCl, 1066-35-9; Me₃SiOSiH₂OSiMe₃, 93254-88-7; OSiH2OSiMe3, 93254-91-2; HMe2SiOSiH2OSiMe2H, 20363-25-1; HMe₂SiO[SiH₂O]₂SiMe₂H, 93254-92-3; [HMe₂SiO]₃SiH, 17449-78-4; [HMe₂SiO]Si(H)OSiH₂OSiMe₂H, 93254-93-4; HMe₂SiO-[SiH₂O]₃SiMe₂H, 93254-94-5.

Contribution from the Kenan Laboratories of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514

An Electroactive Polymer Film on a Mercury Electrode Based on a Thallium **Macrocyclic Polyether Complex**

J. MASSAUX,*[†] P. BURGMAYER, E. TAKEUCHI,[‡] and ROYCE W. MURRAY*

Received February 23, 1984

Films of a copolymer of 4-vinylbenzo-15-crown-5 and (3-methacryloxypropyl)trimethoxysilane were formed and cross-linked on mercury electrodes by solution evaporation followed by exposure to moist HCl vapor. The films in-partition ions complexed by the polyether crown, such as thallium(I) from acetonitrile solution. After partitioning and transfer of the coated electrode to a thallium-free solution, electrochemical waves due to reduction of crown-complexed thallium to mercury amalgam, and the reverse, can be observed. In the presence of thallium in the solution, both crown-complexed and free thallium waves appear. Many monomolecular layer equivalents of crown-complexed thallium react in a cyclic voltammogram, and it is proposed that the thallium migrates to the electrode by hopping between crown sites.

Macrocyclic polyethers (crown ethers) have been the focus of much research since recognition of their properties as selective complexing agents.¹ They are typically uncharged compounds with an internal oxygen-donor-rich cavity capable of cation encapsulation, with selectivity toward cations being primarily a function of the number of oxygen donors and ring size. Applications of crown ethers have been quite diverse, including phase-transfer catalysis, stabilization of Na⁻ ions, and utilization in ion-selective membrane electrodes.²

An important goal in the chemical design of electrode surfaces is the transposition of known chemistry of dissolved substances to the electrode surface. This has been of interest to us and others³ in the design of monolayer films and poly-

meric multilayer films on electrodes. Recent work has included polyionic ion-exchanging polymer films⁴ on electrodes, capable

[†]Present address: Department of Analytical and Radiochemistry, University of Liege, Liege, Belgium.

[‡]Present address: Department of Chemistry, State University of New York, Buffalo, NY 14214.

⁽a) Lehn, J. M. Acc. Chem. Res. 1978, 11, 49. (b) Lehn, J. M. Pure (1)Appl. Chem. 1980, 52, 2441. (c) Kolthoff, I. M. Anal. Chem. 1979, 51, 1R.

Melson, G. A. "Coordination Chemistry of Macrocyclic Compounds"; (2)Plenum Press: New York, 1979.